Pulmonary artery smooth muscle cells from normal subjects and IPAH patients show divergent cAMP-mediated effects on TRPC expression and capacitative Ca2+ entry.

نویسندگان

  • Shen Zhang
  • Hemal H Patel
  • Fiona Murray
  • Carmelle V Remillard
  • Christian Schach
  • Patricia A Thistlethwaite
  • Paul A Insel
  • Jason X-J Yuan
چکیده

Pulmonary vascular remodeling due to overgrowth of pulmonary artery smooth muscle cells (PASMC) is a major cause for the elevated vascular resistance in patients with idiopathic pulmonary arterial hypertension (IPAH). Increased cytosolic Ca(2+) concentration, resulting from enhanced capacitative Ca(2+) entry (CCE) and upregulated transient receptor potential (TRP) channel expression, is involved in stimulating PASMC proliferation. The current study was designed to determine the impact of cAMP, a second messenger that we hypothesized would blunt aspects of PASMC activity, as a possible contributor to IPAH pathophysiology. Short-term (30 min) pretreatment with forskolin (FSK; 10 muM), a direct activator of adenylyl cyclase, in combination with the cyclic nucleotide phosphodiesterase inhibitor isobutylmethylxanthine (IBMX; 200 muM), attenuated CCE in PASMC from normal subjects, patients without pulmonary hypertension (NPH), and patients with IPAH. The FSK-mediated CCE inhibition was independent of protein kinase A (PKA), because the PKA inhibitor H89 negligibly affected the decrease in CCE produced by cAMP. By contrast, longer (4 h) treatment with FSK (with IBMX) attenuated CCE in normal and NPH PASMC but enhanced CCE in IPAH PASMC. This enhancement of CCE was abolished by PKA inhibition and associated with an upregulation of TRPC3. In addition, cAMP increased TRPC1 mRNA expression in IPAH (but not in normal or NPH) PASMC, an effect blunted by H89. Furthermore, iloprost, a prostacyclin analog that increases cAMP, downregulated TRPC3 expression in IPAH PASMC and FSK-mediated cAMP increase inhibited IPAH PASMC proliferation. Although a rapid rise in cellular cAMP decreases CCE by a PKA-independent mechanism, sustained cAMP increase inhibits CCE in normal and NPH PASMC but increases CCE via a PKA-dependent pathway in IPAH PASMC. The divergent effect of cAMP on CCE parallels effects on TRPC expression. The results suggest that the combined use of a PKA inhibitor and cAMP-elevating drugs may provide a novel approach for treatment of IPAH.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Pulmonary artery smooth muscle cells from normal subjects and IPAH patients show divergent cAMP-mediated effects on TRPC expression and capacitative Ca entry

Zhang S, Patel HH, Murray F, Remillard CV, Schach C, Thistlethwaite PA, Insel PA, Yuan JX. Pulmonary artery smooth muscle cells from normal subjects and IPAH patients show divergent cAMP-mediated effects on TRPC expression and capacitative Ca entry. Am J Physiol Lung Cell Mol Physiol 292: L1202–L1210, 2007. First published December 22, 2006; doi:10.1152/ajplung.00214.2006.— Pulmonary vascular r...

متن کامل

FINAL ACCEPTED (LCMP-00214-2006) Pulmonary Artery Smooth Muscle Cells from Normal Subjects and Patients with Idiopathic Pulmonary Arterial Hypertension Show Divergent cAMP-mediated Effects on TRPC Expression and Capacitative Ca Entry

Pulmonary vascular remodeling due to overgrowth of pulmonary artery smooth muscle cells (PASMC) is a major cause for the elevated vascular resistance in patients with idiopathic pulmonary arterial hypertension (IPAH). Increased cytosolic Ca ([Ca]cyt), resulting from enhanced capacitative Ca entry (CCE) and upregulated transient receptor potential (TRP) channel expression, is involved in stimula...

متن کامل

Bosentan inhibits transient receptor potential channel expression in pulmonary vascular myocytes.

Bosentan, a dual endothelin receptor blocker, has been used clinically to treat idiopathic pulmonary arterial hypertension (IPAH). However, the mechanism of its antiproliferative effect on pulmonary artery smooth muscle cells (PASMCs) remains unclear. A rise in cytoplasmic Ca2+ stimulates PASMC proliferation and the canonical transient receptor potential (TRPC) channels are an important pathway...

متن کامل

Increased smooth muscle cell expression of caveolin-1 and caveolae contribute to the pathophysiology of idiopathic pulmonary arterial hypertension.

Vasoconstriction and vascular medial hypertrophy, resulting from increased intracellular [Ca2+] in pulmonary artery smooth muscle cells (PASMC), contribute to elevated vascular resistance in patients with idiopathic pulmonary arterial hypertension (IPAH). Caveolae, microdomains within the plasma membrane, contain the protein caveolin, which binds certain signaling molecules. We tested the hypot...

متن کامل

Upregulation of Na+/Ca2+ exchanger contributes to the enhanced Ca2+ entry in pulmonary artery smooth muscle cells from patients with idiopathic pulmonary arterial hypertension.

A rise in cytosolic Ca(2+) concentration ([Ca(2+)](cyt)) in pulmonary artery smooth muscle cells (PASMC) is a trigger for pulmonary vasoconstriction and a stimulus for PASMC proliferation and migration. Multiple mechanisms are involved in regulating [Ca(2+)](cyt) in human PASMC. The resting [Ca(2+)](cyt) and Ca(2+) entry are both increased in PASMC from patients with idiopathic pulmonary arteri...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physiology. Lung cellular and molecular physiology

دوره 292 5  شماره 

صفحات  -

تاریخ انتشار 2007